
Nazdar Petře.
Jenže on ten roh tý antilopy je na jednom konci tlustý a na druhém špičatý. Takže žádné válcové lano. Pusť si zlehounka vodu z kohoutku a podívej se na křivku ztenčování průřezu padajícího vodního sloupce, než se sloupec potrhá na kapičky, která Ti graficky popisuje matiku akceleračního zrychlení 1g. Tohle je naprosto kritické jak Clemovi, tak Schaubergerovi. U Clema na to stačí kanály hladké a můžou mít i hranatý průřez, ale Clem běhá jen na skutečná dielektrika jako je olej. Dokonce originální pumpa na které to Clem odpozoroval a ze které to Clem odvodil byla a jakž takž fungovala na horký, tekutý asfalt.
http://www.freepatentsonline.com/3697190.pdf
U Schaubergera je to komplikovano vlastnostmi vody, která má díky svým vyhraněným elektro-mechanickým vlastnostem velice striktní nároky na tvarování "potrubí", míněno velice specifické zmenšování průřezu a zároveň natahování spirály pro určité akcelerační zrychlení odstředivou silou. (Jinak jsi to trefil príma.) Proto jsem mluvil o statistikách vlnění a o matice. Dá se to a funguje to i podle Schaubergera, i podle teorie harmonie jenom v určitých otáčkách, při určitém akceleračním zrychlení ve specificky tvarované "trubce", jednak zužování průřezu a jednak progresivního natahování šroubovice. O tohle je Schauberger složitější než Clem (a je to hodně veliký rozdíl) i když z mechanického pohledu pracují se stejným principem.
Tímto principem je, že v porovnání s průměrem danné turbíny potřebuješ po dosažení kritických otáček méně energie na další roztáčení turbíny než jí získáš reaktivní silou získanou na perirefiri turbíny z trysek mířených proti směru otáček turbíny. Do nějakých 125mm průměru to vyžaduje relativně vysoké kritické otáčky, ale s dalším zvětšováním průměru hodnota kritických otáček rapidně a po parabole (exponenciálně) padá. U zhruba 300mm průměru už jsou kritické RPM alespoň teoreticky jenom kolem dvou set (

podle Clemových popisů taky). Funguje to podle Newtonovy Matfyziky, i když plive naprosto zkreslené průtoky (pročež jsem se zabýval tou fontánou, na které jsem prokázal, že se pomýlil s F=ma). Celá ta sranda se musí počítat jako vztahy třech "frames of reference" sakryš, nevím jak se to řekne česky, ale v podstatě ve třech soustavách vzájemných rotačních vztahů, z nichž jedním je závislost pohybu kapaliny vzhledem k turbíně, druhým je závislost rotace turbíny k Matičce Zemi a třetím je závislost rotace kapaliny vzhledem k Matičce Zemi. Nakonec z toho leze, že ta protékaná turbina si vytvoří svůj vlastní "frame of reference" (doslova rámec odkazu, nebo vztahu) a proto to Schaubergerovi na vodu, která má definitivně elektrické vlastnosti indukce na rozdíl od řekněme oleje, i lítalo, zatímco Clemovi to na olej, který se rotací nedá prakticky elektricky indukovat, jenom jezdilo.
Jenom pro zajímavost, všichni o kom vím, kdo se kdy Clema nějak snažili reprodukovat, to jednak zkoušeli s vodou a jednak těm svým "turbínám"
nedali nažrat. Tím mám na mysli, že průřez a i tvar vstupu do turbíny byl vždy naprosto neadekvátní potřebě akcelerace a nezbytnému průtoku kapaliny turbínou. Navíc dvě spirály na turbínu jsou ideální (pro balance) a každé další dělení je k hovnu a jenom zvyšuje ztráty na turbulentním tření v kapalině. (Jo, materiál turbíny bude u vody taky poněkud důležitý, to je ten Schaubergerův průtokový rozdíl mezi měděnou a skleněnou rourou.)
Tohle jsou ty nešťasné pokusy, kdy to prostě v žádném případě nejde reprodukovat.
Se vzduchem obsahujícím vodu je to snazší, protože vzduch je stlačitelný a tím dost odpustí na nepřesnostech akcelerační křivky a tvaru potrubí.

Jenže se zase dramaticky snižuje efektivnost díky relativně daleko menší mase protékající, nyní ne kapaliny, ale tekutiny, takže buďto větší průměr, nebo otáčky, nebo oboje. Samozřejmě se to dá uzavřít do oběhu a není třeba využívat řekněme planetární atmosféry.
S laskavým pozdravem, Slávek
Je-li tvá přítomnost ve výhni okolností, vyuč se kovářem své budoucnosti.