Stránka 42 z 71
Re: no ano
Napsal: ned 13 čer 2010 7:46
od buky
Dvell píše:Ano ano..
Zvednešli závaží "spálíš" energii.. ale přesně tatáž energie se "oběví" v závaží.. takže vlastně jde o přeměnu..
Jak říkám vezmi si libovolný bod ve vesmíru a k němu si počítej energie jak chceš a vycházet to bude.. nemůžeš začít pokus tak že spočítáš energii vzhledem k Zemi a pak si na konci experimentu vzpomenout že si to vlastně chceš spočítat k Jupiteru a divit se že ti to nevychází.
//Ak závaži pustím, tak bude konat práci podle velikosti gravitace a ne jakou velikou energii jsem použil při jeho zvednutí. //
Tohle platí naprosto přesne páč W=hgm protože energie je přímo úměrná tomu zrychlení..
no a pokud se ti nezdá E=mc2 tak nemám co dodat..
snad jedině citovat Einsteina: "Vesmír a lidská hloupost jsou nekonečné, a o vesmíru to jestě není až tak jisté."
Je mi líto byl jsem varován a vylámal jsem si zuby.. na toto opravdu nemám vitamín..
S pozdravem
Dvell
Ak zvednu závaží, tak spálím energii (palivo) a už se nikde neobjeví, protože zvednuté závaží představuje pouze potenciální práci Wp=mgh
Velikost této práce závisí pouze na troch fyzikálních veličiná: mgh
Potvrdil jsem to dvěma experimentami:
1. Dopravení 1kg raketou z naši země na Jupiter - 23,64m/s2
2.Dopravení raketou 1kg z naši země na mesiac - přibližně 1,62m/s2
V obou případech jde o rovnakou vzdálenost, to znamená že se použije k dopravení rovnaké množství energie.
Dvell, od tebe i o od ostatních mi chybí reálny pokus, který by spochybnil můj názor.
Pokud jde o Einsteina a jeho vzorec E=mc2, tak měl bujnou fantazii
Re: no ano
Napsal: ned 13 čer 2010 9:40
od Dvell
buky píše:
Ak zvednu závaží, tak spálím energii (palivo) a už se nikde neobjeví, protože zvednuté závaží představuje pouze potenciální práci Wp=mgh
Velikost této práce závisí pouze na troch fyzikálních veličiná: mgh
ty tu energii do toho tělesa uložíš! kolikrát ti to mám opakovat.. práce tvojich svalů se změní na tu potenciální energiii tělesa..
buky píše:
Potvrdil jsem to dvěma experimentami:
1. Dopravení 1kg raketou z naši země na Jupiter - 23,64m/s2
2.Dopravení raketou 1kg z naši země na mesiac - přibližně 1,62m/s2
V obou případech jde o rovnakou vzdálenost, to znamená že se použije k dopravení rovnaké množství energie.
ano použiješ rovnaké množství energie a pokud spočítáš kolik energie tě to stálo vzhledem k ZEMI pak to vyjde! říkám že nemůžeš behem výpočtů měnit bok ke kterému výpočty provádíš. proto ta inerciální vztažná soustava.. páč výpočty se k ní vztahujíí
Dvě tělesa mají stejnou potenciální energii pokud jsou ve stejné vzdálenosti od Zeme (vzhledem k Zemi a je jedno jestli jededno je na měsíci a druhé třeba na slunci jde jen od vzdálenost OD ZEMĚ)
buky píše:
Dvell, od tebe i o od ostatních mi chybí reálny pokus, který by spochybnil můj názor.
Pokud jde o Einsteina a jeho vzorec E=mc2, tak měl bujnou fantazii
Dobře dáme pokus který vyrátí tvoji teorii.
Vytřelím náboj hmotnost jeden kilogram, ve vakuu rychlostí třeba 100m/s. vzhledem ke mně má energii E=1/2mv2 čiže nějakých 5000J..
a kde se vzal tu se vzal kolem mně poletí týpek rychlostí 50m/s smerěm kterým letí náboj a ten si taky spočítá energii náboje.. vyjde mu 1250J
třetí pozorovatel poletí 50m/s proti náboji a jeho výsledek bude 11250J
a čtvrtýho vystřelím sjeným smerem jako náboj s stejnou rychlostí.. a když on provede výpočet energie Náboje bude mít vůči němu energii 0J
Z tohohle plyne že energie je relativní.. vždy záleží na tom odkud se díváš (ke kterému bodu jí počítáš) nemůžeš ten bod během experimentu měnit.. prostě nemůžeš
Tak hele na Einsteina se vubec nedívej, v případě že máš nejasnosti s newtnovskou fyzikou pak nemá smysl řeštit STR.
BTW z Einsteinových rovnich vychází i atomová bomba a jadernej reaktor a je pár desítek let vyzkoušeno že obojí funguje.. takže Einstein rozhodně věděl co počítá afantazii určitě mněl taky.. jenže takovou jaký my asi nikdy nedosáhnem..
S pozdravem
DVell
Je to jinak
Napsal: ned 13 čer 2010 20:18
od buky
Dvell, ak by si uložil energii do tělesa, tak těleso by konalo rovnakou práci nech se nachází kdekoli a nejen v inerciální soustavě.
V případě vystřelení náboje je energie střelný prach, letící kulka ve vakuu je zas jen potenciální práce, když se kulky srazí přes tenzometr, tak ti ukáže sílu (impulz síly) anebo když kulka narazí na lopatku mlynského kola, tak ho roztočí a může vyrábět elektřinu.
Teplo je fyzikální veličina a ne energie.
Když jde o štěpení atomu tak můžeme mluvit o energii tělesa, ale když těleso (meteor) prolétá atmosferou, tak nejde o žádnou energii tělesa, ale o tření, až tak veliké že těleso může shořet.
Ja Newtona uznávám (okrem 3 Newton zákona), ale Einstein Newtonowsku fyziku zhovadil a tak ho ani neuznávám a ani se nesnažím pochopit.
Level
Napsal: pon 14 čer 2010 1:09
od Dvell
Hmm tak se zdá že máme každej jinej level.. podle všeho máš ty daleko větší..
Eintein ujasnil kde má newtonovská fyzika meze a že ji nelze použít pro dané extremní případy..
Kdo tu probůh mluví o teple?.. zas nákej střelnej prach.. bože vykašli se na to.. je jedno jestli jsem to vystřelil pružinou střelným prachem nebo třeba stalčeným vzduchem.
a zase náký srážky.. a tenzometry.. a komplikace..
ELEMENTÁRNÍ věc.. těleso letící prostorem má Kinetickou energii E=0,5mv2 přečti si ještě jednou muj příspěvek.. stále tam motáš naprostý zbytečný věci.. nevím jak to to mám ještě napsat nebo zopakovat, nevím kolik ti je a upřímně je mi to jedno ale připadá mi to jako že "starého psa ani primitivní fyzice nenaučíš"
BTW Teplo je energie, Teplota je veličina.. ačkoliv opravdu nevím proč si to do toho zamotal
a pokud to mělo patřit k tomu meteoritu.. třecí síly odporu vzduchu mění kinetickou a potenciální energii tělesa na teplo..
Nehledě na to že ty výpočty už se používají.. kolik? 200 let nejmín a zatím to vždy vycházelo.. v podstatě vše pracuje tak jak má všem všechno funguje ale najde se pár jedinců co v tom vidí problem, možná je to dobře ale málokdo má síly na to aby mohl stále opakovat jednu věc 10x jinak..
Odjíždím.. na netu budu zase za týden.. pokud do té doby nevymyslíš nějakou konstruktivní a jednoduchou teorii nebo pokus nebo nevím co tak asi vzdám tuto diskusi a to jen proto že tvé argumenty a komplice mají i na trpělivého člověka silný kalibr. BTW opravdu si myslíš že homo sapiens by si už dávno nevšiml tak závažné nesrovnalosti v zákoně kterým pár milionů lidí denně řeší svoje úkoly?
S pozdravem
Dvell
Je to jinak
Napsal: pon 14 čer 2010 10:40
od buky
Aby mohlo tvoje poučování pokračovat, tak se zeptám: Ak dodám při zvednutí závaží energii, proč se energie projeví jen v inerciálni soustavě?
Na tuhle odpověď klidně počkám i týden a doufám že si přečteš kde zařadit Teplo
Estlipak sis
Napsal: pon 14 čer 2010 12:15
od 1220
Buky zaplatil doučování AHA ?
Já každýmu kdo se s tebou baví o fyzice přidávám body , ale Ty jsi vyděrač
K.
Re: Estlipak sis
Napsal: pon 14 čer 2010 13:18
od buky
1220 píše:Buky zaplatil doučování AHA ?
Já každýmu kdo se s tebou baví o fyzice přidávám body , ale Ty jsi vyděrač
K.
Ale to je veliké nedoruzumění, pokud jde o zákon zachování energie a její proměny mezi sebou, tak z mé strany jde o spochybnění tohoto zákona a pokud jse ptám, tak přistupuju na vaši hru učitel a žák buky.
Proto se ptám znovu: Ak uložím do závaží při zvednutí energii, proč se tato energie projeví jen v inerciální soustavě?
Čekám na konstruktivní odpověď.
Re: Je to jinak
Napsal: ned 20 čer 2010 9:26
od Dvell
buky píše:Dvell, ak by si uložil energii do tělesa, tak těleso by konalo rovnakou práci nech se nachází kdekoli a nejen v inerciální soustavě.
V případě vystřelení náboje je energie střelný prach, letící kulka ve vakuu je zas jen potenciální práce, když se kulky srazí přes tenzometr, tak ti ukáže sílu (impulz síly) anebo když kulka narazí na lopatku mlynského kola, tak ho roztočí a může vyrábět elektřinu.
Teplo je fyzikální veličina a ne energie.
Když jde o štěpení atomu tak můžeme mluvit o energii tělesa, ale když těleso (meteor) prolétá atmosferou, tak nejde o žádnou energii tělesa, ale o tření, až tak veliké že těleso může shořet.
Ja Newtona uznávám (okrem 3 Newton zákona), ale Einstein Newtonowsku fyziku zhovadil a tak ho ani neuznávám a ani se nesnažím pochopit.
Teplo
http://cs.wikipedia.org/wiki/Teplo doporučiji si povšimnout hned první věty.. správněji tepelná energie.. také mně napadá že teplo se vlastně nedá měřit
Teplota
http://cs.wikipedia.org/wiki/Teplota
Kam se tam zas plete třetí Newtonův řeč byla snad o druhém termodynamickém.
buky píše:
Ak dodám při zvednutí závaží energii, proč se energie projeví jen v inerciálni soustavě?
Rozdíl energií se projevuje ve všech soustavách. Když spočítáš počáteční stav tělesa a konečný stav tělesa pro jednu soustavu rozdíl energií těchto stavů je stejný jako rozdíl počátečního a konečného stavu tělesa pro jinou soustavu.
BTW Předem varován, lépe vyzbrojen.
Zdá se že nad tebou mnozí zlomili hůl, tak já si asi už jen umeju ruce.
S pozdravem
Dvell
Re: Je to jinak
Napsal: ned 20 čer 2010 11:25
od buky
Dvell píše:buky píše:Dvell, ak by si uložil energii do tělesa, tak těleso by konalo rovnakou práci nech se nachází kdekoli a nejen v inerciální soustavě.
V případě vystřelení náboje je energie střelný prach, letící kulka ve vakuu je zas jen potenciální práce, když se kulky srazí přes tenzometr, tak ti ukáže sílu (impulz síly) anebo když kulka narazí na lopatku mlynského kola, tak ho roztočí a může vyrábět elektřinu.
Teplo je fyzikální veličina a ne energie.
Když jde o štěpení atomu tak můžeme mluvit o energii tělesa, ale když těleso (meteor) prolétá atmosferou, tak nejde o žádnou energii tělesa, ale o tření, až tak veliké že těleso může shořet.
Ja Newtona uznávám (okrem 3 Newton zákona), ale Einstein Newtonowsku fyziku zhovadil a tak ho ani neuznávám a ani se nesnažím pochopit.
Teplo
http://cs.wikipedia.org/wiki/Teplo doporučiji si povšimnout hned první věty.. správněji tepelná energie.. také mně napadá že teplo se vlastně nedá měřit
Teplota
http://cs.wikipedia.org/wiki/Teplota
Kam se tam zas plete třetí Newtonův řeč byla snad o druhém termodynamickém.
buky píše:
Ak dodám při zvednutí závaží energii, proč se energie projeví jen v inerciálni soustavě?
Rozdíl energií se projevuje ve všech soustavách. Když spočítáš počáteční stav tělesa a konečný stav tělesa pro jednu soustavu rozdíl energií těchto stavů je stejný jako rozdíl počátečního a konečného stavu tělesa pro jinou soustavu.
BTW Předem varován, lépe vyzbrojen.
Zdá se že nad tebou mnozí zlomili hůl, tak já si asi už jen umeju ruce.
S pozdravem
Dvell
Teplo se neměří teplo se počítá, měří se teplota. Ohledem tepla chci taky rozvinout diskusi, ale později.
Trochu jinak: Ak zvednu závaží do výšky, tak jde o Gravitační potenciální energii - mgh, a tu je už první rozpor, gravitace je definována jako síla a ne jako energie a kde je síla je i možnost konat práci, to znamená že jde o gravitační potenciální práci Wp=mgh
Velikost práce závisí jenom opakuji JENOM!!! na těchto troch veličinách, pro energii tam není místo!
Všechny tři fyzikální veličiny mgh můžu změřit a tak dokázat jejich existenci.
Dvell, jak chceš dokázat přítomnost energie či už při zvednutém závaží (potenciální), anebo při padajícím závaží? (kinetická)
Dvell
Napsal: ned 20 čer 2010 13:10
od buky
Stojíme na různych stranách bojiště.
Dávam tobě i ostatním pár milionům lidí kteří věří Zákonu zachování energie: ŠACH-MAT!
Pokud budou existovat lidi, budou existovat i chyby.
hoši hoši
Napsal: ned 20 čer 2010 13:27
od Edgar
Nechci vám do toho kecat, ale valte radši do dílny něco dělat. S pozdravem... Edgar
Re: Dvell
Napsal: ned 20 čer 2010 14:08
od poota
buky píše:Dávam tobě i ostatním pár milionům lidí kteří věří Zákonu zachování energie: ŠACH-MAT!
Zatím spíš jenom dost nesouvisle a nesrozumitelně pleteš páté přes deváté, takže se při nejlepší vůli nedá pochopit, o co Ti vlastně jde. Dokud to nesesumíruješ tak, aby to bylo přehledné a pochopitelné, tak to není ani ušmudlané garde. Zatím to spíš vypadá jenom na to, že jsi ve škole "na fyziku" dost často scházel.
Vytrvale tvrdíš, že některé zákony neplatí - dobře, třeba máš pravdu.
A co tedy platí místo nich?
Jak je to, podle Tebe, tedy správněji?
A jaký to má praktický význam?
Co bude jinak a lépe, když to bude podle Tebe?
Zdravím - poota
???
Napsal: ned 20 čer 2010 14:51
od rejpal
Zajímavá diskuse, jestli to chápu správně, pak buky napadá zákon o zachování energie na základě těchto předpokladů:
1. existuje soustava, ve které dochází k přeměnám energie (v tomto případě uzavřená soustava planet 1 a 2)
2. na planetě 1, kde g=1, zvedneme pomocí jednoduché kladky těleso o hmotnosti m, do výšky h, energie vynaložená na zvednutí tělesa se stává energií potencionální. Pokud těleso "pustíme", energie pádu = energie potřebná ke zvednutí, OK. Pokud ale těleso za uvedených podmínek zvedneme na planetě 1, pak celou kladku přeneseme na planetu 2, kde g=2, pak získává těleso výrazně větší potencionální energii. Kde se v soustavě planet 1 a 2 vzala tato energie?
Re: ???
Napsal: ned 20 čer 2010 15:32
od poota
rejpal píše:... pak celou kladku přeneseme na planetu 2,...
Jakmile se začneme od planety vzdalovat, tak potenciální energie závaží už tím vzdalováním stoupá bez ohledu na to, jak vysoko na té kladce visí. Při přibližování k druhé planetě, jakmile je závaží "zachyceno" její gravitací, tak má, a to bez ohledu na polohu vzhledem ke kladce, maximální potenciální energii, která se přibližováním k povrchu té planety pouze zmenšuje. Takže tímhle příkladem se vůbec nic nezpochybňuje.
Dokonce ani když po vytažení závaží na kladku třeba zdvojnásobíme objem původní planety, tak to žádný zákon nevyvrací - nehledě na to, že asi získáme méně energie, než nás bude stát to zdvojnásobování planety.
Proto se ptám bukyho na
praktické využití. Jeho závaží a tenzáky, létající vesmírem, jsou nepřesvědčivé a navíc prakticky nevyužitelné.
Zdravím - poota
Re: ???
Napsal: ned 20 čer 2010 19:46
od buky
poota píše:rejpal píše:... pak celou kladku přeneseme na planetu 2,...
Jakmile se začneme od planety vzdalovat, tak potenciální energie závaží už tím vzdalováním stoupá bez ohledu na to, jak vysoko na té kladce visí. Při přibližování k druhé planetě, jakmile je závaží "zachyceno" její gravitací, tak má, a to bez ohledu na polohu vzhledem ke kladce, maximální potenciální energii, která se přibližováním k povrchu té planety pouze zmenšuje. Takže tímhle příkladem se vůbec nic nezpochybňuje.
Dokonce ani když po vytažení závaží na kladku třeba zdvojnásobíme objem původní planety, tak to žádný zákon nevyvrací - nehledě na to, že asi získáme méně energie, než nás bude stát to zdvojnásobování planety.
Proto se ptám bukyho na
praktické využití. Jeho závaží a tenzáky, létající vesmírem, jsou nepřesvědčivé a navíc prakticky nevyužitelné.
Zdravím - poota
Poota, proč stále do taháš "energii".
Když zvednu závaží, tak dávám možnost konat práci gravitaci a gravitace je definována jako síla a kde je síla, je možnost konat práci a to gravitace dokáže i bez dodání energie.
Ješte jednou: zdvihnutím závaží dosáhnu potenciální práci Wp=mgh a ktomu nepotřebuji žádnou energii, aby závaží konalo práci potřebuji pouze - mgh!!!
Zákon zachování energie nedává logiku a když nejde sestrojit PM, tak nech si to páni fyzikové najdou jiný zákon který to spochybňuje. Já jsem zatím dospěl k názoru že to až tak beznadějný není.
Rejpal,
jo......... jo